ఈ రోజు ఆర్టికల్ మనం కొన్ని Trigonometry Formulas తెలుసుకోవచ్చు.

Sin A = Opposite Side to A / Hypotenuse

Cos A = Adjacent Side to A / Hypotenuse

Tan A = Opposite Side to A / Adjacent Side to A

Sec A = Hypotenuse / Adjacent Side to A

Cosec A = Hypotenuse / Opposite Side to A

Cot A = Adjacent Side to A / Opposite Side to A

Tan A = Sin A / Cos A

Cot A = Cos A / Sin A

Sin A = 1 / Cosec A

Cos A = 1 / Sec A

Tan A = 1 / Cot A

Sec A = 1 / Cos A

Cosec A = 1 / Sin A

Cot A = 1 / Tan A

Sin 0 = 0

Sin 30 = ½

Sin 45 = 1/√2

Sin 60 = √3/2

Sin 90 = 1

Sin 180 = 0

Sin 270 = -1

Sin 360 = 0

Cos 0 = 1

Cos 30 = √3/2

Cos 45 = 1/√2

Cos 60 = 1/2

Cos 90 = 0

Cos 180 = -1

Cos 270 = 0

Cos 360 = 1

Tan 0 = 0

Tan 30 = 1/√3

Tan 45 = 1

Tan 60 = √3

Tan 90 = infinity

Tan 180 = 0

Tan 270 = infinity

Tan 360 = 0

Sec 0 = 1

Sec 30 = 2/√3

Sec 45 = √2

Sec 60 = 2

Sec 90 = infinity

Sec 180 = -1

Sec 270 = infinity

Sec 360 = 1

Cosec 0 = infinity

Cosec 30 = 2

Cosec 45 = √2

Cosec 60 = 2/√3

Cosec 90 = 1

Cosec 180 = infinity

Cosec 270 = -1

Cosec 360 = infinity

Cot 0 = infinity

Cot 30 = √3

Cot 45 = 1

Cot 60 = 1/√3

Cot 90 = 0

Cot 180 = infinity

Cot 270 = 0

Cont 360 = infinity

sin(90°−x) = cos x

cos(90°−x) = sin x

tan(90°−x) = cot x

cot(90°−x) = tan x

sec(90°−x) = cosec x

cosec(90°−x) = sec x

sin(x+y) = sin(x)cos(y)+cos(x)sin(y)

cos(x+y) = cos(x)cos(y)–sin(x)sin(y)

sin(x–y) = sin(x)cos(y)–cos(x)sin(y)

cos(x–y) = cos(x)cos(y) + sin(x)sin(y)

tan(x+y) = (tanx+tany) / (1-tanx*tany)

tan(x-y) = (tanx-tany) / (1+tanx*tany)